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Confined Phase of QED 
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We study resonant pair production in a strong electric field using the complex- 
time multiple reflection technique. The result is used to explain the occurrence 
of hadronic-like states of e§ - and 3'7 observed in the collision of heavy-ion 
nuclei. It is suggested that the unusual em background created by the heavy-ion 
nuclei is equivalent to a gravitational background. We also explain the experi- 
mental low-lying bound states, using our approach. 

1. I N T R O D U C T I O N  

Particle creation in a t ime-dependent  electromagnetic field has been 
an active area of  investigation from the standpoint of  intense field QED 
and cosmology (Schwinger, 1961; Parker, 1969; Hartle and Hawking, 1976; 
Lapedes,  1978; Duru and Unal, 1986; Lotze, 1985, 1989, Barut and Duru, 
1989). Recently interest in pair  production in t ime-dependent  strong electric 
fields has grown due to an exciting experimental  result obtained from 
heavy-ion scattering. It is found in experiments on U+-Th,  Th+-Th,  and 
Th+-Ca  collisions conducted at the Gesellschaft fiir Schwerionen For- 
schung, Darmstadt  (Kienle, 1987; Tesertos et al., 1987; Reinhardt et al., 
1986) that correlated narrow peak structures are observed in electron and 
positron spectra. The e+e - spectra suggest that decays occur from a bound 
state at rest in the cm system with masses -1 .6 -1 .8  MeV. In addition, a T?, 
bound state has also been observed at LBL (Danzamann et al., 1987) at 
1062+ 1 keV. The e+e - product ion in heavy-nucleus collisions, showing 
multiple resonances in pairs, is characterized by equal scalar momenta  
(most likely oppositely directed) and narrow widths (<40 keV). 

Some characteristic features of  the resonance structures are (i) they 
are produced in the Coulomb field of  heavy-ion nuclei with a united nuclear 
charge of  Z = Z I + Z 2 >  137, (ii) resonance masses are - 3 m e ,  where me is 
the mass of  the electron, (iii) the bound-state formation occurs within a 
volume (1 /m  J ,  i.e., the Compton  volume (the electric field is very strong 
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within this volume, having both space and time variations, and is relatively 
unimportant outside the volume), (iv) the electric field is almost constant 
within the time t R - 3 / m e - 2 X l O - 2 1 s e c ,  apart from slight oscillatory 
behavior, and is totally negligible by tv -2 .Sx  10 -19 sec, when the heavy 
ions have scattered away, (v) the bound state exists for a time much less 
than the annihilation t ime  for the e+e - pair, and (vi) the location and width 
of the lines are independent of Z = Z1 + Z2. All attempts to give a conven- 
tional explanation of the effect in terms of pair conversion from excited 
nuclear states have led to contradictions with the experimental evidence 
(Schweppe et al., 1983; Tsertos, 1985; Kienle, 1987; Reinhardt et al., 1986). 
The current ideas that try to explain the formation of bound states are 
mainly concentrated in three directions. These are (i) the decay of an 
elementary particle called an axion (Chodos et al., 1986), (ii) the formation 
of a confined phase of QED like QCD which subsequently decays into an 
e+e - pair or a yy pair (Celenza et al., 1986, 1987; Caldi and Chodos, 1987; 
Ng and Kikuchi, 1987; Cea, 1989), and (iii) interference effects among 
different amplitudes (Cornwall and Tiktopoulos, 1989). 

The first possibility has been rejected because no particle like the 
"axion" has been observed so far in e+e - colliders (Davies, 1986). Moreover, 
a sequence of hadronic-like states of e+e - goes against the axion hypothesis. 

The second possibility has been partially successful, but no model has 
been able to demonstrate the existence of a confined phase in QED. Some 
comments may be in order on the QCD-like confined phase ofQED (Celenza 
et al., 1986, 1987; Caldi and Chodos, 1987; Cea, 1989). It is suggested that 
the heavy ions in the GSI experiment induce significant background electro- 
magnetic fields and these unusual background field environments may give 
rise to a new phase of QED. The QCD phase is a confined one, whereas 
the QED phase is a nonconfined one. To understand this, it is suggested 
that when the background fields disappear, the new phase becomes a false 
vacuum and the confining potential is then no longer operative. The new 
phase (false vacuum) then (Coleman, 1977) decays to the familiar vacuum 
of perturbative QED. The phase is then no longer bound and instead of 
annihilating each other as in positronium decay, liberation occurs more 
rapidly than the e+e - annihilation. Though the existence of a confined 
phase has been established in the U(1) case with a possibility of forming 
a composite object having a level structure, the question remains regarding 
the deconfining mechanism. The suggestion is that perhaps there is a chiral 
phase transition as in QCD. In QCD there is a close connection between 
a chiral transition and a deconfining one. 

One serious objection regarding this type of approach is that whereas 
the origin of the confining phase is clear in QCD, it is not all clear in QED, 
at least in the present case. The vacuum polarization of QED will be of no 
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help in deciding the existence and the fate of the QED confined phase 
(Cornwall and Tiktopoulos, 1989). 

In this paper we deal with the particle production mechanism in a 
time-dependent electromagnetic background. The background is chosen 
such that it might correspond to the situation in heavy-ion scattering or the 
electromagnetic background in a cosmological problem. In Section 2 we 
propose a method of calculating the pair production amplitude using a 
complex-time multiple reflection technique. The method proposed is an 
extension of the complex-time multiple reflection technique of Knoll and 
Schaeffer (1977), not in space, but in time. In this sense our approach is a 
generalization of the Klein paradox situation, not in space but in time, 
proposed by Cornwall and Tiktopoulos (1989). 

In Section 3 we show that the results obtained in Section 2 can also 
be derived by considering the motion of an electron in a Robertson-Walker 
space-time. Here we use Bogolubov transformation techniques that are 
generally used (Birrel and Davies, 1982) to study the particle production 
mechanism in curved space. The results of Sections 2 and 3 suggest that 
the simulation of a curved space-time background may be a quite probable 
situation in heavy-ion scattering. 

In Section 4, we use this idea to develop a model that will explain the 
formation of e+e - and y y  bound states in heavy-ion scattering. As the LBL 
results of Danzamann et  al. (1987) provide a single citation for the y y  

bound state and the GSI experiments of Darmstadt have not been confirmed 
by other groups, the model proposed in Section 4 may be considered to 
show the existence of a confined phase of QED with the gravitational 
background (4 - 1) as an ansatz. Further experiments on heavy-ion scattering 
will decide whether the confined phase of QED exists or not. 

Recently Barut and Duru have considered the pair production in an 
electric field in a time-dependent gauge with spontaneous pair production 
and suggested that such a pair production in the em case is more parallel 
to some models of an expanding universe. We also obtain the same result 
as Barut and Duru (1989). In a recent communication (Biswas and Kumar, 
1990) we have used a potential cA3 = e A  for 0 <- t <- tA and zero otherwise 
to obtain the result of Cornwall and Tiktopoulos (1989) using the same 
complex-time reflection technique. 

2. COMPLEX-TIME MULTIPLE REFLECTION 

Let us start with a one-dimensional Schrrdinger equation not in space 
but in time, 

[d~2+ w 2-  U(t)] ~b(t) = 0 (2.1) 
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Let us assume that U(t) is an analytic function of  t and there exist two 
complex turning points tl and t2 given by 

w 2-  U(tl,  t2)=0 (2.2) 

The classical paths contributing in a complex semiclassical approximation, 
joining two prescribed real points t' and t" (Fig. 1), are those with zero, 
one, two reflections between two complex turning points tl and t2. The 
multiple reflection series for 0(t", t') depends on the situation of  the region 
of  analyticity of the WKB approximants exp(- i ,  $1.2) with classical action 

I' 
S1,2(tl,2, t) = dt' [w 2 -  U(t')] 1/2 (2.3) 

tl,2 

in the complex t plane. Let us quote the resulting multiple reflection series 
when t '=  oo and t" are on the right of t~ and t2. The multiple expansion 
reads (Knoll and Schaeffer, 1977) 

1 
6(  t', ~ )  [w 2_ U(}tt)] l /4 (exp[-iS(t" ,  ~) ]  

- i exp{(-i)[S(t l ,  oo) -S ( t " ,  q)]} 

X ~ { - i  exp[-iS(t2, tl)]} ~) (2.4) 
/z=0 

with 

where 

with 

= 1/{1 +exp[-2iS(t2, t,)]} (2.5) 

{f ) S(t", ~)  = lim dt [w 2 -  U(t)]l/2+ wt' 
t 

= dt{[w 2-  U( t ) ] l /2 -w}+wt  " (2.6) 

Re[w 2 -  U(t)]l/2> 0 

The diagrammatic representations of (2.5) are given in Figure 1. 
The interpretation of  (2.4) is as follows. The classical trajectories 

building up the quantum mechanical wave are the direct (real) trajectory 
from t '=  m to t" represented by the first term in the expression (2.4) and 
the trajectory from ~ returning to t" after "complex" reflections between 
t~ and t2 leading to the geometrical series (2.4) and (2.5). In the usual WKB 
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Fig. 1. (a) No reflection, (b) one reflection, and (c) reflections at tl, t2, and t 1. 

approximation with real semiclassical path we have only the first term 
exp[ - iS( t " ,  oo)] in (2.4). The reflection coefficient for this one-dimensional 
problem is given by 

~( t" ,  oo) ~ e x p ( i w t " ) +  iR e x p ( - i w t )  (2.7) 
t ' ~ o o  

such that 

e x p [ - 2 i S ( ~ ,  tl)] 
R - (2.8) 

1 + exp[-2iS( t2 ,  tl)] 

Hence for certain complex values of  the multiple reflection terms, 
(2.8) may exhibit poles if 

S( t2 ,  q) = (N+�89 (2.9) 

with N integer. Such poles may add up to give nonperturbative contributions 
enhancing R. 

In order to apply the result to the creation of fermion pairs, exp(~: iwt )  
terms in (2.7) must be replaced by free particle solutions of  the Dirac 
equation. We now show that the Dirac equation in a t ime-dependent electric 
field can be brought to the form (2.1) leading to an expression like (2.7). 
We consider the Dirac equation 

( i y  ~* 0~, - ey~*a~, - M ) ~ ( x )  = 0 (2.10) 

We choose the electromagnetic potential to be time dependent,  

A,, = (0, O, O, E t )  (2.11) 
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The more familiar potential 

A'~ = ( -Ez ,  0, 0, 0) (2.12) 

is related to A~ by a gauge transformation 

A'~ = A~, + O~X (2.13) 

with 

X = - E z t  (2.14) 

Putting (2.12) in (2.10), we get 

{i0o+ a3[P3 + eA3(t)] - /3 'm}Xj( t )  = 0 (2.15) 

after substituting 

~bj = Xj(t) exp(iP �9 x) (2.16) 

For j = 2, P will correspond to the negative of antiparticle momentum. 
In (2.15) 

a~ = yoYi, fl 'm = yoM-~x j "  P• m = ( p 2 +  M2)1/2 (2.17) 

As equation (2.15) contains two anticommuting variables, we can choose 

~ r =  O'3~ ~3 = --O'1 

to write (2.15) as 

{-i0o+ Crl[P3 + eA3(t)] + cr3m)Xj(t) = 0 (2.18) 

The free particle solutions of (2.18) are 

/cos10  , . . 

Xlo = ~ sin 10) exp t - ,wt )  (2.19) 

[ - s i n � 8 9  . . .  
X2o=k cosi  0 )exp( twt)  (2.20) 

where 

Biswas and Das  

m /'3 
cos 0 = - - ,  sin 0 = - -  (2.21) 

w w 

The second-order Dirac equation corresponding to (2.15) is 

[0o 2 -  w2-  P~+ (P3 + ea3) 2+ ia3eE]~j(x) = 0 (2.22) 

Equation (2.22) is of the form (2.1) with 

U( t) = P ~ - [  P3 + ea3( t)]2 + icE (2.23) 
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The • sign before eE is due to the a3 term. We will find that this term 
causes an enhancement  of  pair production ampli tude compared to scalar 
particle pair  production. The multiple reflection series for the case of  a 
Dirac particle is now written as 

tk(t) ~ X,o(t) + iRX2o (t) (2.24) 

where Xm and X2o are given by (2.19) and (2.20). It is assumed that there 
is a multiplicative factor exp( iP  �9 x) in the rhs of  (2.24). The turning points 
are now given by 

w 2 -  U(t)  = 0 

so that 

where 

P3 + eEtl = - im 
(2.25) 

P3 + eEt2 = +im 

m = ( P 2 +  M2+ ieE) 1/2 

Let us now evaluate S(t2, tl) and S(oo, q). From (2.3) 

S(t2, q ) =  - df{m2+[P3+eA3(t ')]2} ~/2 
12 

Let us put 

in (2.27).We get 

P3 + eEt' = iT 

i f +  m _ T2)1/2 s ( t , ,  t 2 ) = - ~  _ (m ~ d r  

i m 2 f + m [  T2\ 1/2 ( T )  
=eE tl- ) a 

Now letting T~ rn = sin 0, we get 

im 2 
s (  t:, t,) ='2--e-el rr 

Now 

S(oo, tl) = l im  S(oo, e) + S(O, t,) 
8+0 

i m  2 3"r 
= l i m  ( w e )  + - -  - 

E + o  2eE 2 

(2.26) 

(2.27) 

(2.28) 

(2.29) 
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so that the reflection amplitude is 

exp[-2iS(oo, q)] 
R -  

1 + exp[-2iS(t2, tl)] 

exp( m2 cr / 2eE ) 
- 1 + exp(Trm 2/eE) 

The enhancement of R is due to poles at complex time given by 

(1) 
" ~  ~ = N +  ~r 

o r  

Let us introduce 

imZ= 2eE ( N +~) 

(2.30) 

m2/eE = (P] + M 2 + ieE) /eE 

= t z 2 / e E  + i 

= A + i  (2.31) 

For scalar particle pair production, the + i term will be absent. In that case, 
using (2.28) and (2.29), we get 

[RI2 - exp ~'h 
(1 + exp ~-h) 2 (2.32) 

For the spin-l /2 case, 

[R[2 - exp ira 
(1 - exp ~'h) 2 (2.33) 

The result (2.32) is also obtained by Barut and Duru (1989) by a different 
method; however, (2.33) differs in our case. Equation (2.32) or (2.33) gives 
the probability for one pair production. The average number of pairs 
summed over all modes can be easily evaluated by approximating 
(2.32) and (2.33) as exp(-crh). Thus (Barut and Duru, 1989), 

aPo ~ exp(- era) 

= (eE) 2L3T exp(-Trtx2/eE) 
(27r)3 (2.34) 

which is in agreement with the well-known result. 
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3. ROBERTSON-WALKER SPACE-TIME 
AND PARTICLE CREATION 

For a t ime-dependent  field the vacuum is very complicated. Actually, 
one does not know what the vacuum is in the Klein paradox situation, 
particularly for a strongly varying, t ime-dependent  potential  where the 
product ion of  real pairs occurs or the gas 2mec 2 is close (which is actually 
the case in heavy-nucleus scattering). To define the vacuum, one needs 
mode  solutions corresponding to the equation of  motion. In our case, 
initially the mode solutions are defined such that 

0 
-~ Xj( t) = - iwXj(  t) (3.1) 

corresponding to 

( iOo + a3P3 - ~ ' m ) X j ( t )  = 0 (3.2) 

Let the vacuum defined by these mode solutions be ]0in), i.e., 

~jl0in) = 0 (3.3) 

where 

t~2(t) = ~ [~jXj(t) + ~ - X * ( t ) ]  (3.4) 
J 

with ~ and aj as creation and annihilation operators. In a t ime-dependent  
field there is a possibility of  mixing of positive- and negative-energy states 
and the meaning of the definition (3.1) is lost. Actually this is the trouble 
in the Klein paradox situation. Due to pair  creation the positive energy 
component  at t ~ +oo will get contributions from the negative-energy com- 
ponents (due to mixing), resulting in different asymptotic states at t ~ oo 
and t ~ - ~ .  Moreover,  the behavior  of t ime-dependent  A(t)  at t ~ • will 
also be different, at least by a constant term i.e., 

[A(t ~ +oo) - A( t ~ - ~ ) [  = const 

In Minkowski space-time the vector O/Ot is a Killing vector orthogonal 
to the spacelike hypersurface t = const and the vacuum is invariant under 
the action of the Poincar6 group. I f  for some reason the Poincar6 symmetry 
is lost (this situation occurs in curved space-time) one has to define another  
set of  mode solutions xj such that 

02(0 = ~  [~)( j ( t )  + ~j-.~*(t)] (3.5) 
J 
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and a new vacuum and a new Fock space. As both sets are complete, one 
can write (Birrel and Davies, 1982) 

= ~, (aj ,X,  + f l j ,X*)  (3.6) 
i 

Xi = Y (a*~', + flj,)~*) (3.7) 
J 

where both sets form a complete set. Whenever the Bogolubov coefficient 
flij # 0 there is particle creation and the number of particle created is given 
by 

(~IN, IO) = Z I/~j,I 2 (3.8) 
J 

To find /3j~, we may start with (2.22), finding " in"  and "out"  mode 
solutions. We find Xin # Xout, showing that I/3~[ 2 # 0, i.e., the strong electric 
field mixes the positive-energy and negative-energy states. As a result, the 
Poincar6 symmetry is lost and the space-time is not fully Minkowskian. In 
order to understand this statement, we start from a RW space-time to obtain 
equation (2.22) for a particular choice of radius parameter of RW space-time. 
The results (2.32) and (2.33) are also obtained from the curved space-time 
technique mentioned above. Thus, the simultation of a gravitational back- 
ground by the strong electric field seems convincing. 

The Coulomb fields of the heavy-ion nuclei is of the form 

Z e  2 
F ( t )  = [r(t)] 2 (3.9) 

where r ( t )  is measured from the point where the two nuclei would have 
collided in the absence of Coulomb interactions. The time dependence can 
be evaluated knowing the trajectories of the colliding nuclei. As the behavior 
of the Dirac electron at very short distance is unusual (Landau and Lifshitz 
1982) we take a different course, writing (3.9) as 

Z e  2 
F ( t )  = a2 ( t ) r  2 (3.10) 

Equation (3.10) implies a transformation r 2 ~  a2 ( t ) r  2, i.e., 

ds 2 = dt  2 - a2( t )( dx2 + dy2 + dz  2) (3.11) 

i.e., the possibility of describing the time-dependent Coulomb field of nuclei 
by RW space-time. In principle one should determine a (t) locally by writing 
a Lagrangian density of the a ( t )  field, em field, and electron field. Let us 
try to establish the equivalence between the description given in Section 2 
and (3.11). For simplicity, let us write down the line element (3.11) for the 
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one-dimensional problem. 
straightforward. We write 

as  

where 

The generalization 

ds2= dt 2 -  a2(t) d x  2 

to three 
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dimensions is 

(3.12) 

ds 2 = a (~7)(d~72 - dx 2) (3.13) 

f' I t = dt '= a(rf)  d~ 7' (3.14) 

It should be pointed out that the line element (42) is manifestly conformat 
to Minkowski space-time. Suppose we start with a scalar field equation 

(Tqx + M2)qt(x) =0  (3.15) 

The mode solutions of (3.15) can be written as (Birrel and Davies, 1982) 

ux(~7, x) = (2~r) -1/2 exp(ikx) Xg(x) (3.16) 

where Xg now satisfies 

d 2 
d~72 Xk(~)+  [k2+ a(rl)M2]Xk(~7) = 0 (3.17) 

If  now for a particular choice of a(~7) the mode solutions 

x~"(~) # x~u'(~) 

we say that there is particle creation by a time-dependent gravitational field 
(in our case it is the em field). Let us choose 

a( rl ) = a2 + bZrl 2 (3.18) 

which is the well-known solved example for the spacetime (3.13). The exact 
solutions of (3.17) and then, for a(~/) given by (3.18), 

x~n(r l )=(2Mb) l / ' exp ( - -~ )O_( l_ ix /2 ) [ ( i -1 ) (Mb) l /2~7]  (3.19) 

X~Ut(~) = xikn(--r/) for ~7>0 (3.20) 

In the above expression 

a2M k 2 
A = - - - ~ + M b  (3.21) 

and D~ and parabolic cylinder functions. Further, 

X~ (3.22) (2Mlrllb) -~/2 expU:iMbrl2/2) 
~t-+:i:oO 
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As X~" out # X k  , we define two adiabatic vacuums 10i A) and a 10out) that are not 
identical. This means that the Bogolubov coefficient is I~,j12~ 0. All these 
are standard results. To evaluate the Bogolubov coefficient, we have the 
relation 

U~k"-- i(2~')l/2exp(-TrA/4) ( 2 A ) /'(1(1- ix)) u~ u t -  i exp - - -  U~ ut ~ (3.23) 

SO 

F [ k 2 Ma~\ ]  
I~d2: exp(-~;0 : exp L-~ k~-~+--ff-) j (3.24) 

To bring our Dirac equation (2.22) to the form (3.17) to find a(t), we put 

~7=(t+ P3/eE) 

A3(t) = eEt 

to get 

and identify 

[ ~ 2  + p 2 -  p~ + M2 + ieE + ( eE)2~72]Xj( t) =0 (3.25) 

K 2 = p  2, -P~  + MZ + ieE = a 2, eE = b (3.26) 

Thus, the Dirac particle of mass M moving in a field A ,  = (0, 0, 0, Et) 
can be viewed as the motion of a particle of  unit mass in RW space-time 
(3.13) with 

a( rl ) = (leE + M 2 -  P~) + ( eE )2( t + P3/ eE ) 2 (3.27) 

Actually, one should start from the first-order Dirac equation to show the 
equivalence; however, (3.25) can also be considered as a Dirac equation 
with 0 as a four-components object. 

If one considers a Kle in-Gordon particle, the number of  particles 
produced is, from (3.24), 

I~kl 2 = exp[-Tr(M2 + P~)/eE] 

= exp ( -  7rA) 

which is the same result (2.31) that we obtained from the complex-time 
reflection technique. For fermion pairs the result is again 

I f lk l  2 = ! exp(-'rrA)I 2 

but 

A = ( P~+M 2+ ieE)/eE 
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However, the pole position of the amplitude is now given by [from (3.23)] 

1(1 - i A )  = - N  

occurring from the poles of the F function. Thus, we get 

i(m2+ leE) = 2eE( N +�89 (3.28) 

This is exactly the same result that we obtained from the multiple reflection 
technique in Section 2. These poles in R are very crucial to the understanding 
of the reflection of the positron (electron) from the vacuum, i.e., the 
mechanism of pair production (Cornwall and Tiktopoulos, 1989). 

4. THE MODEL 

In this section we propose a model to show the existence of e+e - and 
Y7 bound states analogous to quark-antiquark bound states and glueball 
states of QCD. This type of model was originally considered by Dicke 
(t957) to deal with gravitation as a sort of electromagnetic effect. We have 
seen in previous sections that pair production in a time-dependent electro- 
magnetic field can equivalently be described by RW space-time. It is thus 
assumed that the scale factor of RW space-time becomes time independent 
when the production ceases and is described by a background given by 

ds 2 = l i e ( r )  dt 2 -  e( r)( dx2 + dy2 + dz 2) (4.1) 

Equation (4.1) is taken as an ansatz for the case when the heavy ions are 
scattered away. One may argue that the realistic situation in heavy-ion 
scattering does not correspond to the case (4.1). Our suggestion is that for 
a model background like (4.1), it is possible to show the existence of a 
confining potential as well as quark-antiquark-like bound states for e+e - 
and yy. With this assumption we take for the Lagrangian density of the 
model (Dicke, 1957) 

L = Lf + Lem + L, (4.2) 

where 

Lf = ~k f~€ O~e O.s (4.3) 

8 
Lem- 16~ F~'~f~"F'~f~ (4.4) 

i - 

L, = - ~  ~ a .~ (4.5) 
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For now we take the electron as massless. The mass term will be included 
in the proper  place. In equations (4.3)-(4.5), f,~ are given by (4.1) and 

~/~ = e-1/2(r)  v i (4.6) 

,~0= e+l/2(r),yo (4.7) 

F ~  = A~,~ - A~,~ (4.8) 

The forms (4.3)-(4.8) are dictated by a scaling of length and time measure- 
ments as (Dicke, 1957) 

L = L0 e-1/2 (4.9) 

CA) ~--- s ' - 1 / 2  (4.10) 

so that we practically work in a flat Newtonian coordinate system 

ds 2= r l ~  dx  ~ dx ~ (4.11) 

with ~7,~ = diag(1, -1 ,  -1 ,  -1) .  To distinguish the model from the hadronic 
case, we mention that the coupling constant K of the scalar field e is a 

2 parameter of  the theory, which in the present case would be - m e  instead 
2 of  m~ in the hadronic case. 
The variational principle corresponding to (4.9)-(4.11) is now written 

a s  

3 f L ( - ~ )  ~/2 d4x  = 0 (4.12) 

The field equations obtained are 

V2e - (Ve)2 - - K  (eE2+ B2 - tO~'yOe 1/2~ '~ 
2e - \ 87r 87re ] (4.13) 

~ 0~/, = 0 (4.14) 

V x ( B / e )  - (O/Ot)(eE)  = 0 (4.15a) 

V-  (eE) = 0 (4.15b) 

In (4.13) we assumed ~ b ~ e x p ( - i w t ) ,  and we used (4.14) to get the rhs of 
(4.13). To understand the origin of the confined phase, we note that when 
one calculates the energy density from the expression 

T~  = ~ v O L ~ -  3~ L~ (4.16) 
'af, .  

one finds that the second term on the lhs of  (4.13) is the energy density of 
the scalar field e. The first two terms on the rhs correspond to the energy 
density of  the em field and the third term is that for the electron field. In 
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the sense of general relativity we say that the source of e is the energy 
density of  the field. The signs of  these terms indicate that there may be 
cancellation between them to generate a proper  e for having a confined 
phase of  QED (Dicke, 1957). As these energy terms are dominant at short 
distances, the occurrence of  a confining phase even in QED seems convinc- 
ing from (4.13). To generate a proper  e, characteristic of  a confined phase, 
we choose the boundary conditions 

e(r) ~ 1 

(4.17) 
e( r) r-,~ finite 

The exact solutions of (4.13)-(4.15) can be obtained numerically along the 
lines of Aoki et al. (1989). However, we look for an analytical solution 
approximating the rhs of  (4.13) by 2 Ay and put 

e 1/2 = exp(2h) 

in (4.13) and then 

to get 

with the solutions 

F = rexp(2A) 

F" + 2Ayr = O 

F = a + br -�89 3 (4.18) 

In view of  (4.17), we take a = 0  and b = l  in (4.18) as F ~ r  as r-~0. The 
required solution is 

e = (1-1Afr2)2 (4.19) 

for r<< R. The surface characterized by r = R separates the confining phase 
from the nonconfining one. 

Now, to show the existence of bound states for both the electron and 
the photon we put (4.19) in (4.14) and (4.15). Using the approximation 
h}/2r<< 1 and 

tp ~ exp(-Afr2/  2 -  iwt ) ( : )  (4.20) 

we find that equation (4.14) reduces to 

k - 1  
~:' = - -  ~:  - ~ o e ~ 7  

r 

k + l  (4.21) 
7 '= w e e - - -  71 

r 
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Now looking back at the photon field equations (4.15) and using 

E=aA/at-Vc~, B = V x A ,  e'=ae/ar (4.22) 

we convert (4.15) to 

E ~ V2A+-- ( rxVxA)+w2e2A=V(V.  A)-icoe2Vd) (4.23) 
Er 

To make (4.21) homogeneous and to get cavitylike eigenmodes, we enforce 
the gauge condition (Biswas and Kumar, 1990; Khadkikar, 1987) 

V(V �9 A) - Roe 2 Vg~ = 0 

As r--> 0, the Lorentz condition is satisfied. However, as r~ (3/Ay) 1/2 lies in 
the confinement region, the condition V �9 A = 0 is well satisfied. Equation 
(4.22) then reduces to 

e' OA 
V2A-- -  - - +  co2e2A = 0 (4.24) 

e ar 

Thus, in the region V �9 A = 0, eigenmodes can be defined as 

A TE = Lt~ntm 

A T M  = V X L~b.tm 

with g,.,. = R.wtm(O. r and R.t now satisfies the equation 

R•'+\r(2-e'le/R"'+( c~ l(l+r e 1) )R , ,=O (4.25) 

The pair (4.21) is now converted into a second-order equation, 

r 2  " ~: (4.26) 

The structure of (4.25) and (4.26) suggests that the electrons and the photons 
are confined in the same way in the gravitational background. However, 
we have to include the mass term for the electron case. The solutions of 
(4.25) or (4.26) have been carried out elsewhere (Biswas and Kumar, 1989, 
1990). For the small-r region it is sufficient to consider the radial equation 
a s  

I (1+1)\  + 2 R ~ t +  W2e 2 R~l r ~ )R.l=O (4.27) 
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to demonstrate the bound-state structure. Approximating e 2--- 1 -4Afr2  and 
putting 

Rnt = (1 / r )  U~l 
~2 4 2 

p~ = ~2/2A 

we have that equation (4.27) reduces to 

d2U.~ r 2 2 2 t ( t + l ) ]  
dr 2 + - -  Un,:0 d - ~ j  

The solution is 

U,, = clr '+1 exp( -Xr  2) Fl( �89 k+3 ;  Ar 2) (4.28) 

To ensure good asymptotic behavior, we impose the condition 

�89 = ~7 (4.29) 

with n = 0, 1, 2, etc., which restricts the w values to 

16hf 1/2 3 

= B ( M + ~ )  (4.30) 

with B =  (16AI/3) 1/2 and M = 2 n + / + 1 .  For the electron, we introduce a 
potential term V(O)= - ~ ~  in the Lagrangian (4.5). Equation (4.30) is 
then modified to 

E., = A + B ( M  +�89 (4.31) 

In our model both e + and e-  act as gravitational objects bounded by a 
harmonic oscillator potential. So we get the energy of the pair e+e - as 

Ep = 2 3  + 2B( M + �89 (4.32) 

Table I gives the fitting corresponding to (4.32) for A = 838 keV and B = 
74 keV. 

Table I 

Mnl(keV) Mnl(keV) 
n,l equation (4.32) (Cea, 1989) Me~p(e+e -) 

(0,0) 1471 1471 1471 
(0,1) 1646 1660 1646 
(1,0) 1794 1785 1782 
(1,1) 1942 1925 1837 
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I n  c o n c l u s i o n ,  the  co r r e l a t ed  n a r r o w  p eaks  o b s e r v e d  in  h e a v y - i o n  
co l l i s ions  are  d u e  to a t i m e - d e p e n d e n t  e l e c t r o m a g n e t i c  b a c k g r o u n d  c rea t ing  
the  par t i c les  wi th  c o n s e q u e n t  f o r m a t i o n  o f  a Q E D  c o n f i n i n g  phase  due  to 
a n  an t i - de  Si t ter- l ike s ta t ic  b a c k g r o u n d .  
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